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Abstract. Metagenomic genome binning is a crucial step in reconstruct-
ing individual microbial genomes from complex environmental sequenc-
ing data. GraphMB is a recent tool that leverages Graph Neural Net-
works (GNNs) and Variational Autoencoders (VAEs) to integrate se-
quence features with assembly graph topology for improved binning accu-
racy. This study presents an extensive benchmarking of GraphMB across
synthetic, semi-synthetic and real-world datasets encompassing diverse
environments, sequencing and assembly technologies and binning strate-
gies. We evaluate GraphMB'’s performance using standard bin quality
metrics and compared against established binners. Our results show that
GraphMB consistently produces a competitive or superior number of
high-quality (HQ) and medium-quality (MQ) genome bins, particularly
in long-read and co-assembly scenarios. We further assess the impact of
optional input features and find that their benefits vary by dataset. Run-
time performance scales linearly with dataset size. Overall, GraphMB
demonstrates versatility and robustness across varied metagenomic con-
ditions, though improvements in graph integration and negative pair
selection could further enhance performance.

Keywords: metagenomics - genome binning - benchmarking - bioinfor-
matics.

1 Introduction

The increasing availability of metagenomic sequencing data has significantly
expanded our ability to study microbial communities in environments such as
oceans, soil, and the human gut. These datasets consist of DNA fragments—strings
of varying length—originating from hundreds or thousands of microorganisms.
However, the raw data, without further analysis, offer little insight into the un-
derlying microbial genomes.

A fundamental task in metagenomics is genome binning—the process of
grouping assembled DNA fragments that likely originate from the same micro-
bial genome. This enables the reconstruction of individual genomes, referred to
as metagenome-assembled genomes (MAGs), and supports analyses such as iden-
tifying the types of organisms present, understanding what functions they can
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Fig. 1. Workflow for MAG recovery. DNA is extracted from environmental samples,
sequenced, assembled into contigs, and binned into draft genomes (MAGs), which are
then analyzed taxonomically and functionally. Adapted from [2], licensed under CC
BY 4.0.

perform, and discovering new species|[1]. Figure 1 provides an overview of this
process, from sample collection and sequencing to MAG recovery and analysis.

Traditional binning approaches rely on sequence composition (e.g., k-mer
profiles) and abundance patterns across samples. While effective in many cases,
they often struggle with fragmented assemblies, low-abundance organisms, or
closely related strains [3]. To address these challenges, recent tools have proposed
incorporating assembly graph information—a representation of contig overlaps
generated during the assembly process (Figure 1). This graph captures the struc-
tural context of contigs and can provide valuable information for more accurate
binning.

GraphMB is a recent tool that exemplifies this direction. It combines contig
features (such as k-mer composition and abundance patterns) with graph neu-
ral networks (GNNs) and variational autoencoders (VAEs) to learn informative
embeddings of contigs by considering both their individual features and their
connectivity in the assembly graph [9]. These embeddings are then clustered to
generate genome bins. Although promising, GraphMB has been evaluated only
on a limited set of datasets, raising questions about its robustness and versatility
when applied to diverse scenarios.

This project aims to investigate the following question:

Is GraphMB versatile enough to handle the diversity of current
metagenomic datasets, including different sequencing technolo-
gies, environments, and experimental designs?
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To answer this, we conduct a detailed benchmarking study of GraphMB
using real, synthetic, and semi-synthetic datasets. We assess the quality of the
resulting genome bins, the impact of different assembly strategies, and the role of
optional inputs such as SCGs and assembly graphs, as well as the tool’s runtime
performance.

Our main contributions are:

— A systematic evaluation of GraphMB across a diverse set of datasets, includ-
ing different sequencing technologies, assemblies and binning strategies.

— A study of how optional inputs (e.g., depth profiles, SCGs, assembly graphs)
influence binning results.

— An empirical analysis of runtime performance under GPU acceleration.

2 Domain Background

Metagenomics is the study of genetic material recovered directly from envi-
ronmental samples, without the need to culture the organisms in the laboratory.
This is especially valuable for studying microbial communities, where a large
portion of organisms are difficult or impossible to grow in isolation.

Sequencing is the process of reading the DNA molecules from a sample and
converting them into digital form. Modern sequencing platforms output millions
of small DNA fragments called reads, which are strings of characters from the
alphabet {A, C, G, T}, each character representing a nucleotide. These reads
are typically stored in standardized file formats such as FASTA or FASTQ; an
example of the FASTA format is shown in Figure 2.

>NG_008679.1:5001-38170 Homo sapiens paired box 6 (PAX6)

ACCCTCTTTTCTTATCATTGACATTTAAACTCTGGGGCAGGTCCTCGCGTAGAACGCGGCTGTCAGATCT
GCCACTTCCCCTGCCGAGCGGCGGTGAGAAGTGTGGGAACCGGCGCTGCCAGGCTCACCTGCCTCCCCGC
CCTCCGCTCCCAGGTAACCGCCCGGGCTCCGGCCCCGGCCCGGCTCGGGGCCCGCGGGGCCTCTCCGLCTG
CCAGCGACTGCTGTCCCCAAATCAAAGCCCGCCCCAAGTGGCCCCGGGGCTTGATTTTTGCTTTTAAAAG
GAGGCATACAAAGATGGAAGCGAGTTACTGAGGGAGGGATAGGAAGGGGGGTGGAGGAGGGACTTGTCTT
TGCCGAGTGTGCTCTTCTGCARAAGTAGCAAARATGTTCCACTCCTAAGAGTGGACTTCCAGTCCGGCCCT
GAGCTGGGAGTAGGGGGCGGGAGTCTGCTGCTGCTGTCTGCTAAAGCCACTCGCGACCGCGAARAATGCA
GGAGGTGGGGACGCACTTTGCATCCAGACCTCCTCTGCATCGCAGTTCACGACATCCACGCTTGGGAAAG
TCCGTACCCGCGCCTGGAGCGCTTARAGACACCCTGCCGCGGGTCGGGCGAGGTGCAGCAGAAGTTTCCC
GCGGTTGCARAGTGCAGATGGCTGGACCGCAACAAAGTCTAGAGATGGGGTTCGTTTCTCAGARAGACGC

Fig. 2. Example of a sequencing read stored in the FASTA format. Each read consists
of a header line (beginning with >) followed by the nucleotide sequence. Adapted from

[4].

To reconstruct longer genomic regions, these reads are computationally as-
sembled into larger sequences called contigs using assemblers. Contigs are un-
interrupted stretches of sequence that likely come from the same genome, but
the source organism is not known at this stage. The set of all contigs produced
from a metagenomic sample is called a metagenome assembly. In addition to
the assembled contigs themselves, one can also estimate how many sequencing
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reads map to each contig across one or multiple samples. This measure, referred
to as coverage depth (or simply depth, sometimes also called abundance
or co-abundance), provides information about the relative abundance of each
contig in the sample(s), and is often used as a feature for genome binning.

Some assemblers (e.g., metaFlye [5], metaSPAdes [6]) also produce an assem-
bly graph, which represents how sequencing reads overlap and are connected.
These graphs are built using graph-based algorithms to help piece together con-
tigs from individual reads. However, not all regions of the genome can be unam-
biguously resolved—due to repeats, sequencing errors, or low coverage—so some
connections remain uncertain. As a result, the assembly graph includes edges
between contigs that reflect these unresolved relationships. This structural in-
formation can be useful for downstream analysis, such as genome binning.

Another useful input for binning is the presence of single-copy marker
genes (SCGs)—genes that are typically found exactly once in a genome and
are conserved across related organisms. Identifying which contigs contain which
SCGs provides important clues for separating contigs from different genomes.
For example, if two contigs contain many of the same SCGs, it is unlikely they
belong to the same genome, and they can be used to train binning models with
negative examples.

Genome binning is the process of grouping contigs that likely originate
from the same organism into bins, which are used to reconstruct metagenome-
assembled genomes (MAGSs). These bins can then be taxonomically classified
and functionally annotated, enabling insights into the microbial community.

3 Related Work

3.1 Sequencing Technologies and Their Impact on Binning

Genome binning is fundamentally influenced by the characteristics of the se-
quencing data used in metagenomic studies. The sequencing process generates
DNA reads from environmental samples, which vary in length, error profile,
and coverage depending on the technology. These properties affect how accu-
rately contigs are assembled and, subsequently, how well they can be binned
into genomes.

INlumina sequencing[15] produces short reads (typically 100-300 bp) with
very low error rates. These reads provide high-quality coverage and are well-
suited for accurate taxonomic profiling and abundance estimation. However, due
to their short length, they often result in fragmented assemblies, making it harder
to correctly bin contigs, especially in complex communities with closely related
strains.

Pacific Biosciences (PacBio)[16] and Oxford Nanopore Technologies
(ONT)[17] are long-read sequencing platforms. PacBio reads can range from
10-30 kbp, while ONT reads can exceed 100 kbp. These longer reads improve
assembly continuity and can resolve repeat regions and structural variations
more effectively than short reads. However, they tend to have higher error rates,
particularly ONT reads, which can complicate downstream analyses.
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In metagenomics, combining technologies (hybrid assemblies) is a common
strategy. Short reads provide base-level accuracy, while long reads offer conti-
nuity. For genome binning, long-read assemblies tend to produce longer, more
informative contigs that are easier to cluster into accurate genome bins.

Different sequencing platforms, therefore, not only influence the quality and
contiguity of the assembly but also the input features (like k-mer composition
and coverage depth) used by binning algorithms. Long-read technologies are
particularly beneficial for binners that leverage structural information, such as
assembly graphs, as seen with tools like GraphMB.

3.2 Binning Strategies: Single, Multi, and Co-Assembly

Metagenomic binning strategies can differ not only in the algorithms they employ
but also in how they use sequencing data across multiple samples. Three common
strategies are [14]:

— Single-Assembly Binning: Each sample is assembled independently, and
binning is performed using only its own contigs and depth profiles. This
approach preserves sample-specific features but may fail to capture shared
low-abundance genomes.

— Multi-Assembly Binning: Each sample is still assembled individually, but
the binning process uses depth profiles from multiple samples to improve
co-abundance estimation. This allows better discrimination of contigs from
different organisms based on shared abundance patterns.

— Co-Assembly Binning: Reads from multiple samples are combined into a
single assembly before binning. This increases the chance of assembling com-
plete genomes, especially for low-abundance species, but may merge closely
related strains, complicating binning.

These approaches present trade-offs between strain resolution, completeness,
and the risk of introducing chimeric contigs—artificial contigs formed by incor-
rectly joining sequences from different organisms during assembly, which can
lead to errors in binning and downstream analyses.

3.3 Assemblers Used in This Study

We tested GraphMB on assemblies produced by four widely used tools: metaFlye|[5],
metaSPAdes[6], MEGAHIT|7], and OPERA-MS|8]. These assemblers per-
form the critical task of assembly, which is responsible for generating contigs from
sequencing reads. The first three are capable of outputting assembly graphs, al-
though in this study only graphs generated by metaFlye were used. Regarding
sequencing input, MEGAHIT and metaSPAdes are designed for short-read data
(e.g., Nlumina), while metaFlye targets long-read technologies such as Oxford
Nanopore (ONT) and PacBio. OPERA-MS is a hybrid assembler that combines
short and long reads, but does not produce an assembly graph.
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3.4 Binning Tools Compared in This Study

Table 1 summarizes the genome binning tools evaluated in our benchmark. These
tools were selected for their widespread use and diversity of approaches, which
include probabilistic modeling, variational autoencoders, and graph-based learn-
ing. We also include GraphMB, the method under evaluation in this work.

Table 1. Overview of binning tools included in our benchmark.

Tool Description Year|Ref.
GraphMB |Graph-based method that uses Graph Neural Networks|2022 |[9]
(GNNs) and Variational Autoencoders (VAEs) to integrate
sequence features with assembly graph connectivity.
CONCOCT|Bins contigs based on Gaussian mixture models using k-mer|2014 ([10]
composition and coverage across multiple samples.
MaxBin 2 |Uses an Expectation-Maximization algorithm with sequence|2016 |[11]
composition and abundance to assign contigs to bins.
MetaBAT 2|Employs probabilistic distances between contigs based on|2019 |[12]
tetranucleotide frequency and abundance for adaptive bin-
ning.

VAMB Learns contig embeddings using a Variational Autoencoder|2021 |[13]
trained on k-mer and abundance profiles, followed by clus-
tering.

3.5 Evaluation Metrics and Tools

To assess the quality of the bins produced by GraphMB and other binning tools,
we adopted standard metrics that reflect both the completeness and specificity
of genome reconstruction.

Completeness quantifies how much of a reference genome is recovered
within a bin. Higher completeness indicates that most of the genome’s sequences
have been captured.

Contamination estimates the extent to which a bin includes sequences from
other genomes. It is typically inferred based on the number of duplicated single-
copy marker genes.

For real and semi-synthetic datasets that lack ground truth genome labels,
we define Purity as 1 — Contamination, providing an approximate measure of
bin specificity. For fully synthetic datasets, where true genome assignments are
available, purity can be computed directly by comparing predicted bins to the
known references.

We also categorize bins by quality based on these metrics:

— Medium Quality (MQ) bins have completeness greater than 50% and
contamination below 10%.
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— High Quality (HQ) bins are defined as those with completeness greater
than 90% and contamination below 5%. Although some definitions of HQ
bins require additional features (e.g., rRNA or tRNA genes), we adopt this
simplified definition to avoid introducing additional layers of analysis.

While completeness, contamination, and purity are valuable metrics—particularly
for tool developers—the number of HQ bins is often the most relevant from a
practical perspective, as it reflects how many near-complete genomes can be
reliably recovered. Therefore, the more HQ bins recovered, the better.

To compute these metrics, we employed two tools depending on the dataset
type:

AMBER (18] was used for synthetic datasets with known ground truth la-
bels. It directly compares predicted bins to reference genomes and reports metrics
such as completeness, purity, and the number of high-quality bins, allowing for
rigorous benchmarking in controlled conditions.

CheckM2 [19] was applied to real and semi-synthetic datasets without
ground truth. It estimates completeness and contamination using machine learn-
ing models trained on lineage-specific SCGs. While less precise than ground truth
comparisons, CheckM2 enables quality assessment in practical, real-world sce-
narios.

This combination of metrics and tools provides a robust framework for evalu-
ating binning performance across both synthetic and natural metagenomic sam-
ples.

4 Experimental Design

4.1 Datasets Used for Benchmarking

To evaluate the performance and versatility of GraphMB, we selected a di-
verse set of metagenomic datasets encompassing synthetic, semi-synthetic, and
real-world scenarios (the assemblies used for these datasets are summarized in
Table 2). This variety ensures a comprehensive assessment of the tool across
different levels of taxonomic complexity, sequencing strategies, and ecological
contexts.

From the CAMI (Critical Assessment of Metagenome Interpretation) bench-
marking challenges, we used three datasets. The CAMI 1 high-complexity
dataset [20] is the simplest of the CAMI datasets used in this study—it sim-
ulates a community with high species and strain diversity, but includes only a
single co-assembly based on short reads and is less heterogeneous in terms of
experimental design.

In contrast, the CAMI 2 marine and plant-associated datasets [21] are
significantly more complex and realistic. They include a wide variety of refer-
ence genomes and were assembled using multiple strategies, including single-
sample and co-assembly approaches. These datasets also incorporate sequencing
data from different technologies (e.g., Illumina, PacBio) and include assemblies
generated by multiple assembler tools submitted by participants in the CAMI
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challenge. This makes them ideal for assessing a tool’s robustness across diverse
conditions.

We also included the MetaHIT dataset [13], a semi-synthetic dataset based
on human gut microbiota. It was constructed by combining reads from known
bacterial isolates and assembling them with minimal sequencing errors (referred
as error-free in Table 2), offering a realistic yet controlled benchmark with avail-
able reference labels.

To test GraphMB on real, complex microbial communities, we used three
additional datasets. The AalE dataset, from a wastewater treatment plant
(WWTP), and the Soil dataset, representing a highly diverse and heteroge-
neous soil microbiome, were both introduced in the original GraphMB study [9].
These datasets present unique challenges due to the lack of complete reference
genomes and the variability in sequencing depth and community composition.

Finally, we included the Cow Rumen dataset, a real dataset sequenced
using Oxford Nanopore Technologies (ONT), which provides long reads and
presents a low-bias, strain-resolved view of a complex microbial community [5].
This dataset adds further diversity to the benchmark by incorporating long-read
sequencing data from an agricultural environment.

This selection of datasets enables a robust evaluation of GraphMB under a
wide range of conditions, from controlled synthetic environments to ecologically
rich real-world samples.

4.2 Optional Input Features and Their Impact

GraphMB supports three optional input features that can influence its binning
performance: coverage depth, assembly graphs, and single-copy marker
gene (SCG) annotations. These inputs are explained in more detail in sec-
tion 2. Depth profiles capture co-abundance patterns across samples, assembly
graphs offer structural context between contigs, and SCGs enable biologically
informed constraints during model training. While not required, these features
can enhance bin quality in complex scenarios, though they may also increase
runtime (especially markers).

4.3 Negative Pair Filtering Based on SCG Overlap

An experimental feature was added to GraphMB to control the number of shared
single-copy genes (SCGs) between contigs when generating negative training
pairs. Two new arguments were introduced: one specifying the minimum num-
ber of SCGs required for two contigs to be considered a negative pair, and an-
other specifying the maximum. While this approach yielded improved binning
results in a few cases, the outcomes were inconsistent across datasets, and no
universally optimal threshold values were identified.

Despite its limited impact on accuracy, this feature proved useful for reducing
memory consumption in large datasets. By filtering out a substantial number of
highly redundant negative pairs, it allowed GraphMB to run more efficiently on
memory-constrained systems.
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4.4 Computational Efficiency Evaluation

To assess GraphMB’s computational efficiency, we recorded the total execution
time of each run, including both training and clustering phases. All experiments
were conducted with GPU acceleration enabled. The hardware used consisted
of an AMD EPYC 9124 16-core processor, 256 GiB of system memory,
and an NVIDIA L4 GPU. These conditions provide a realistic baseline for
evaluating the tool’s runtime performance across datasets of varying size and
complexity.

5 Results and Discussion

In this section, we analyze the performance of GraphMB across a variety of
datasets. Our goal is to evaluate both the versatility and robustness of GraphMB
under diverse experimental conditions.

All results presented in this section were obtained after applying a filtering
step to the binning outputs: bins with a total length below 200 kbp were ex-
cluded. This threshold helps remove spurious, incomplete bins that can distort
quality metrics and comparisons. The same filtering was applied to GraphMB
results and to the external results used for other binners.

It is important to note that only the GraphMB results were produced as part
of this study. Assemblies and binning outputs for other tools (e.g., MetaBAT
2, VAMB, MaxBin 2) were obtained from publicly available benchmarks and
evaluation platforms[5,9,13,21]. As such, with the exception of the AalE, Soil
and Cow Rumen datasets, we did not have access to the corresponding assembly
graph files for these assemblies, and therefore they were not tested with graph-
based features.

Table 2 summarizes the main characteristics of most of the assemblies used
in our experiments. These factors are important to consider when interpreting
GraphMB’s binning performance and runtime behavior, as they can significantly
affect both quality and computational requirements.

5.1 Execution Time and Efficiency

Figure 3 analyzes GraphMB’s runtime behavior. Plot 3A shows that execution
time increases linearly with the number of contigs, with runs using SCGs being
consistently slower. Despite the added overhead, the use of markers can yield a
higher number of HQ and MQ bins in most cases. Notably, the CAMI High (s12)
dataset demonstrates both high efficiency and output quality, whereas complex
real datasets like Soil (r3) yield lower binning throughput, as seen in plots 3B
and 3C.

5.2 Binning Performance and Ranking Comparison

Figure 4 summarizes the performance of GraphMB compared to other widely
used binners (CONCOCT, MaxBin 2, MetaBAT 2 and VAMB) (Table 1) across
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Table 2. Summary of synthetic (code sx), real and semi-synthetic (code rx) datasets
and their assembly metrics. GA - Gold Standard Assembly

Code|Name Co- Sequencer|Assembler Length|{N50 |# #
Assembly (Gbp) |(kbp)|Contigs|Samples
sl Marine NO Illumina GA 0.415 5 125197 |1
s2 Marine YES Illumina GA 2.079 |29 350238 |10
s3 Marine YES Illumina MEGAHIT [0.953 |5 303974 |10
s4 Marine NO PacBio GA 1.035 8 168481 |1
sH Marine YES PacBio GA 2.595 |83 149860 |10
s6 Plant NO Illumina GA 0.207 |31 35258 1
s7 Plant YES Illumina GA 1.487 |26 311881 |21
s8 Plant NO PacBio GA 0.584 |6 119814 |1
s9 Plant YES PacBio GA 2.600 |19 367373 |21
s10  |Plant NO ONT GA 0.241 |25 41392 1
sll1 |Plant YES ONT GA 1.087 |41 163877 |21
s12 |CAMI-High [YES Illumina GA 2.803 |249 |42038 |5
rl AalE YES ONT metaFlye [1.906 |79 45843 |4
r2 MetaHIT YES Illumina error-free  [1.144 |8 195601 |264
r3 Soil NO ONT metaFlye [1.919 |93 47062 |1
r4 Cow Rumen|YES PacBio metaFlye [1.254 |40 52653 |23
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Fig. 3. Plot A illustrates how GraphMB’s execution time scales with the number of
contigs in the input assembly, comparing runs with and without the use of a marker
gene (SCG) file. The accompanying bar plots depict the number of High Quality (HQ)
(B) and Medium Quality (MQ) (C) bins obtained per minute of execution time of the
best run. In those best runs, all datasets, with the exception of soil (r3), were using
SCGs. The labels correspond to the code in Table 2.
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four datasets. These specific datasets (s2, s7, s12, and r2) were selected be-
cause public benchmark results for the other binners were available for them.
GraphMB demonstrates competitive results in most metrics, particularly in the
number of High Quality (HQ) bins. More notably, it scored considerably better
in completeness and the proportion of HQ bins for datasets s12 and r2.

To consolidate performance across different metrics, we calculated an overall
ranking score for each binner (Figure 5). For each dataset, tools were ranked by
their average completeness, purity, HQ bin percentage, and total HQ bins; these
ranks were summed to obtain a final score (lower is better). GraphMB ranked
1st in every dataset except the more complex plant-associed one (s7).
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Fig. 4. Binning performance comparison across datasets s2, s7, s12 and r2 (see Table
2 for the corresponding code). A - bin completeness distribution (the diamond symbol
and number indicate the mean), B - bin purity distribution (like in A,the diamond
symbol and number indicate the mean), C - percentage of HQ bins present in the bins
produced (after filtering), D - number of HQ bins (dark color) and MQ bins (light
color).
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Fig. 5. Overall ranking scores of each binner across datasets s2, s7, s12 and r2 (see
Table 2 for the corresponding code). The smaller the score the better.

5.3 Impact of Binning Strategy on GraphMB Performance

Figure 6 shows the number of HQ and MQ bins obtained across various binning
strategies and sequencing technologies (see sections 3.1 and 3.2). Co-assembly
consistently yielded the highest number of bins, particularly when depth in-
formation was included. Interestingly, single_no_d often outperformed single
(for HQ bins), suggesting that depth profiles derived from a single sample may
introduce noise rather than useful signal.

In terms of sequencing technologies, PacBio-based assemblies produced the
best results overall, followed by Illumina. ONT-based assemblies consistently
yielded the lowest number of high-quality bins, which may be attributed to
the higher error rates traditionally associated with ONT reads—despite recent
improvements in accuracy.

Overall, when multiple samples are available, co-assembly with depth profiles
appears to be the most effective strategy. In contrast, for scenarios with only a
single sample, performing a single assembly without using depth information
seems to be the safer choice.

5.4 Impact of Assembly Strategy and Assembler on Binning
Performance

Figure 7 examines how the choice of assembly affects binning performance.
In Plot TA, we compare binners using two assemblies derived from the same
CAMI Marine dataset: the gold standard (s2) and a real assembly produced
with MEGAHIT (s3). As expected, performance is lower on the MEGAHIT as-
sembly due to its imperfections. However, the relative drop varies across binners.
MetaBAT 2 and CONCOCT show a moderate decrease in the number of HQ
and MQ bins, while GraphMB and VAMB suffer a larger decline, indicating that
some methods are more robust to imperfect assemblies.

Plots 7B and 7C focus on GraphMB alone, comparing its performance across
different assemblers (see subsection 3.3) without optional input features. These
assemblies were submitted by participants of the CAMI 2 challenge, providing a
diverse set of real-world assembly strategies. metaSPAdes seem to have the best
overall performance. metaFlye performs particularly well for the Plant dataset.
In contrast, the Marine assembly, generated using Flye (not metaFlye), shows
lower performance—Ilikely due to Flye not being tailored for metagenomics.
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Fig. 6. Number of HQ and MQ bins, produced by GraphMB, across different datasets
and binning strategies (as referred in subsection 3.2). co - co-assembly, co_no_d -
assembly from multiple samples but with no coverage depth information, multi - multi-
assembly, single - single-assembly, single no d - assembly from a single sample but
with no coverage depth information.

These results emphasize the combined influence of both sequencing technology
and assembler choice on downstream binning quality.

5.5 Impact of Optional Input Features on Real Datasets

Figure 8 shows how different combinations of optional inputs affect GraphMB’s
performance on real datasets. In general, providing more auxiliary information
can improve results, but the optimal combination varies by dataset.

If we consider the best result as the one yielding the highest number of
HQ bins (using MQ bins as a tiebreaker), then the most effective configuration
differs across datasets. The Cow Rumen dataset performed best when all optional
features were used (gmd), AalE achieved its highest results using only SCGs and
depth profiles (md), and surprisingly, Soil achieved its best performance without
any optional inputs (f).

Interestingly, the use of the assembly graph (g) appears to decrease perfor-
mance in most scenarios. It’s worth noting that these results are based solely
on graphs generated by the metaFlye assembler; graphs from other assemblers
may yield different outcomes.

6 Conclusion

In this study, we conducted an extensive benchmarking of GraphMB, a graph-
based genome binning tool, across a diverse collection of synthetic, semi-synthetic,
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Fig. 7. Plot A compares the number of HQ and MQ bins produced by different binners
from datasets s2 (blue, gold standard assembly) and s3 (orange, MEGAHIT assembly)
(see Table 2 for codes), which are different assemblies from the same samples. Plots B
and C compare the number of HQ and MQ bins produced by GraphMB from assemblies
from different assemblers across multiple samples, all evaluated without optional input
features (e.g., SCGs or depth profiles). The MEGAHIT and metaSPAdes assemblies
were generated from Illumina short reads. The metaFlye Plant assembly was produced
from ONT long reads, while the Marine assembly uses Flye (not specifically designed
for metagenomics) with PacBio long reads. OPERA-MS combines both short and long
reads in a hybrid assembly approach.
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Fig. 8. Number of HQ and MQ bins produced by GraphMB across real datasets, using
different combinations of optional input features. Each bar is labeled with a letter
code representing the features used: f — no optional features, g — assembly graph, m —
marker genes (SCGs), d — coverage depth.
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and real metagenomic datasets. The results highlight GraphMB’s strong perfor-
mance in recovering high- and medium-quality bins, particularly in co-assembly
settings where depth information is available. Its ability to integrate graph-based
structural information and deep learning techniques gives it a notable edge in
complex scenarios, often outperforming traditional binners in datasets with long
reads or high strain diversity.

GraphMB’s main advantages include its flexibility in handling different se-
quencing technologies, its competitive binning accuracy, and its support for op-
tional features that can enhance results in certain conditions. In terms of ef-
ficiency, it scales linearly with assembly size and remains practical for large
datasets, especially when optimized configurations are used.

However, some weaknesses remain. The quality of the assembly graph strongly
affects performance, and in some cases (e.g., metaFlye-generated graphs), the
inclusion of this feature slightly degrades results. Furthermore, the tool is com-
putationally demanding when using marker gene information.

Overall, GraphMB is a versatile and promising tool for metagenomic genome
recovery. Future work may explore optimizing its negative pair selection and
extending compatibility with a broader range of assemblers, including different
types of assembly graph.
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